Counting process-based dimension reduction methods for censored outcomes
نویسندگان
چکیده
منابع مشابه
Sufficient dimension reduction for censored predictors.
Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-b...
متن کاملSupport Vector Hazards Machine: A Counting Process Framework for Learning Risk Scores for Censored Outcomes
Learning risk scores to predict dichotomous or continuous outcomes using machine learning approaches has been studied extensively. However, how to learn risk scores for time-to-event outcomes subject to right censoring has received little attention until recently. Existing approaches rely on inverse probability weighting or rank-based regression, which may be inefficient. In this paper, we deve...
متن کاملProcess variation dimension reduction based on SVD
We propose an algorithm based on singular value decomposition (SVD) to reduce the number of process variation variables. With few process variation variables, fault simulation and timing analysis under process variation can be performed efficiently. Our algorithm reduces the number of process variation variables while preserving the delay function with respect to process variation. Compared wit...
متن کاملDimension reduction methods for microarrays with application to censored survival data
MOTIVATION Recent research has shown that gene expression profiles can potentially be used for predicting various clinical phenotypes, such as tumor class, drug response and survival time. While there has been extensive studies on tumor classification, there has been less emphasis on other phenotypic features, in particular, patient survival time or time to cancer recurrence, which are subject ...
متن کاملAnalysis of Correlation Based Dimension Reduction Methods
Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2019
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asy064